skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Manzie, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Manzie, C (Ed.)
    The rigid body attitude stabilization problem with constrained control inputs has been studied by many researchers. However, if perfect eigen-axis rotation in rest to-rest maneuvers is also desirable, the control design problem becomes more challenging and, to the best of the authors’ knowledge, has not yet been addressed. In this letter, an anti-windup compensation approach to this problem is developed. A nonlinear dynamic inversion control is used to obtain satisfactory unconstrained performance and this is supplemented by an anti-windup compensator when constraints are encountered. The compensator provides global L2 performance under reasonable conditions. A highlight of the approach is that the anti-windup compensator can have a nonlinear structure, giving flexibility in the choice of its parameters. Simulation results demonstrate the effectiveness of the proposed scheme as well as the performance improvement achieved using a compensator with state-dependent parameters. 
    more » « less
    Free, publicly-accessible full text available June 20, 2026